
.net technique flash

76 .net february 2009

 Knowledge needed Flash CS3, ActionScript, XML

 Requires Flash CS3

 Project time 1 hour

Most of us like to travel, and some of us have been lucky enough
to have visited a good dozen places across the globe. What better
way to show this than a Flash map that users can interact with to

find out more about your travels?
On the CD, open map-dashboard.fla. The file has been set up, the frame

rate has been pushed from 12fps to 30fps for smoother animations, and all
the countries are individually grouped into movieclip symbols.

A closer inspection of the movieclip shows they’ve been given a unique
instance name using the country codes. Later we’ll use this as a hook to locate
and map the data from our XML to the correct country.

The XML
Let’s go over a sample of the xml structure we’re going to be using in this
tutorial. On the disc, open the file mapdata.xml.

It’s a good rule of thumb to identify the document as being XML. XML
gives us the ability to do this using the XML declaration.

 <?xml version=”1.0” encoding=”UTF-8” ?>

This declaration tells the parser which XML version we’re using and the

character encoding.
We’re trying to keep the XML clean and readable: any country-specific

information such as its name and code is formatted as an attribute to the
node named country. If we were to have more information about the country
– let’s say we’ve visited France on two different occasions – then the details
would be held within the node(s) named param for each of these visits.

You may notice the countries without any additional data look different –
all elements must have an opening tag and a closing tag, with the exception
of empty elements; these can be closed with a slash at the end.

Parsing our data
I find it useful to get the data into a manageable form inside Flash before
getting bogged down with how and where you’re going to display it. On the
disc open up partial-dashboard.fla. Let’s create a new XML object:

 var mapDataXML: XML = new XML();

Next we need to tell Flash to ignore any white space inside the XML
document. White space refers to characters that appear as blank but still
include information that can confuse the Flash player.

 mapDataXML.ignoreWhite = true;

The onLoad handler will tell the Flash movie what to do when the XML has
been loaded into the Flash. In this instance we want it to run the function
parseXMLData.

 Flash create an
interactive map
Show off all the places you’ve visited with an interactive Flash-enabled map. Designer
Martin Dingley (www.soapslurp.co.uk) explains how to go about it

 mapDataXML.onLoad = parseXMLData;

Let’s get the ball rolling and load our XML into our movie.

 mapDataXML.load(“../xml/mapdata.xml”);

OK, now we’re going perform the actions to parse our data into objects we
can easily access in our Flash movie.

 function parseXMLData(success: Boolean) : Void {
 if (!success) return;
 xmlRoot = this.firstChild;
 xmlRootTotal = xmlRoot.childNodes.length;
 for (var k: Number = 0; k < xmlRootTotal; k++) {
 module = xmlRoot.childNodes[k].nodeName.toLowerCase();
 if (module == ‘countries’) {
 dashboardRoot = xmlRoot.childNodes[k];
 dashboardTotal = dashboardRoot.childNodes.length;
 dashboardInfo = new Array();
 for (var i: Number = 0; i < dashboardTotal; i++) {
 var DBCountryCode: String = dashboardRoot.childNodes[i].attributes.
 code;
 dashboardInfo[DBCountryCode] = new Object();
 dashboardInfo[DBCountryCode].name = dashboardRoot.childNodes[i].
 attributes.name;
 dashboardInfo[DBCountryCode].code = dashboardRoot.childNodes[i].
 attributes.code;
 dashboardInfo[DBCountryCode].params = new Array();
 dashboardParamLength = dashboardRoot.childNodes[i].childNodes.
 length;
 for (var n: Number = 0; n < dashboardParamLength; n++) {

Your essential CD
All the code from this

month’s tutorial can be

found on this issue’s CD.

What you’ll learn We’re going to create a dynamic way of registering the different
countries we’ve visited onto a Flash-enabled map

 .net february 2009 77 next>

.net technique flash

 dashboardInfo[DBCountryCode].params[n] = new Object();
 dashboardInfo[DBCountryCode].params[n].title = dashboardRoot.
 childNodes[i].childNodes[n].childNodes[0].firstChild.nodeValue;
 dashboardInfo[DBCountryCode].params[n].desc = dashboardRoot.
 childNodes[i].childNodes[n].childNodes[1].firstChild.nodeValue;
 }
 }
 getDashboardCountriesMC();
 }
 }
 }

You can find a commented version of the code above on the CD for a more
step-by-step detailed explanation of what everything is doing.

What we’ve done is create an associative array, which is an array that
has named indices, not numeric ones. For us to access country specific
information, all we need to use is the country code. Finally, once our array has
been built, we want to run the function getDashboardCountriesMC.

Mapping everything together
We’re going to start by creating ourselves some little helpers. The
getCountryCode function will return the country code we added to all our
country movieclips when used with _name property.

 function getCountryCode(str:String) { return str.substr(8); }
 The second function will adjust the colour property of any movieclip we pass
 to it.

 function changeColour(mc: MovieClip, colour: String) : Void {
 var newColour = new Color(mc);
 newColour.setRGB(colour);
 }

We’re telling Flash to create a new colour object based upon the movieclip.
The colour object has several methods available to it; we’re only interested
in setRGB. This will give our colour object its new colour value based on the
hexadecimal value we pass to it. Next create a new array, which will act a
temporary container for our country movieclips on the Flash stage.

 function getDashboardCountriesMC():Void {

Iterate through all instances in the movieclip dashBoardMap_mc, which
contains all our individual countries.

 for (i in container_mc.dashboardMap_mc) {

We only want movieclips; we can check this using the type of operator. This
can return any of the following as a string: string, movieclip, object, number,
boolean, object, function.

 if (typeof (container_mc.dashboardMap_mc[i]) == “movieclip”) {

Good: now we know they’re all movieclips, we need to iterate through all
the items in our array we created when parsing the XML data.

 for (j in dashboardInfo) {

Check that we have a country movieclip on the stage, which shares the
same country code in its instance name, and then push that into the
temporary array we created earlier.

Some people find the Flash IDE more of a hindrance than a help, and
some people just feel more comfortable working with ActionScript in
an editor that they can use day in and day out, when working with HTML.

Macromates Textmate is my weapon of choice. (Unfortunately for
those of you using Windows this is only available for Mac and the future
doesn’t hold much hope of this changing any time soon – check out
e-editor.) Textmate is an extremely powerful text editor specialising in
saving you time. The program is extendable and has a huge and active
community behind it.

Don’t worry though, Windows users, we haven’t forgotten about you.
FlashDevelop, is a .NET open source editor for Flash and web developers
which is sure to fit the needs of many, with full support for ActionScript 2
and ActionScript 3 development, offering a host of tools at the ready, more
noticeably for some intelligent code completion, which is a gem if you ever
suffer from a lazy finger or two.

Similar to Textmate, running and compiling your Flash movie can be set
up with the same key combination you’re used to using in Flash; this saves
you one trip.

Importing any external ActionScript 2 file into your main timeline
involves adding a single line of ActionScript code to your timeline; just
remember not to close off the include with a semi colon.

#include “init_script.as”

Flash alternatives
Don’t feel confined to the Flash IDE

 The frame rate has been
 pushed from 12fps to 30fps
 for smoother animations

Movieclips Each country has been converted into a movieclip and given an instance
name. All country outlines have been grouped

New XML Object Before we can start working with the XML, we first need to create a
new XML object and then import the XML into our Flash movie

.net technique flash

 if (dashboardInfo[j].code == getCountryCode(container_mc.dashboardMap_
 mc[i]._name)) {

 newClipArr.push(container_mc.dashboardMap_mc[i]);
 }
 }
 }
 }

Initiate a setInterval
Finally we want to initiate a setInterval. This will in turn fire off another
function that will give the user feedback on each of the countries loading
progressively, rather than all at once.

 intervalId = setInterval(callBack, duration);
 }

The callBack function checks that the count is less than the total amount
of countries. If this condition is returned true then it will call our
addDashboardMovieClipProps, otherwise it will terminate the setInterval
using clearInterval();.

 function addDashboardMovieClipProps(mc: MovieClip) : Void {
 changeColour(mc, BUT_ROLL_OUT);
 mc.onRollOver = function() {
 changeColour(this, BUT_ROLL_OVER);
 countryCode = getCountryCode(this._name);
 displayCountryInfo(dashboardInfo[countryCode].name + “ (“ +
 dashboardInfo[countryCode].code + “)”);
 };
 mc.onRollOut = function() {
 changeColour(this, BUT_ROLL_OUT);
 removeTip();
 };
 }

We pass into this function the movieclip (country) that we want to add the
events to. We start by setting the default colour.

This is different from the initial load of the movie, so the user can tell what
country(s) they can interact with.

Creating the tooltip
So everything’s great, we can interact with our map now, but we could give
the user some more information.

Let’s give them some feedback by displaying the name of the country
they’ve hovered over in the form of a tooltip.

Start by creating a new movielclip symbol: insert > new symbol. You
should be prompted with a dialogue box asking you to select the name and
type. Give your new movieclip symbol a name of tooltip and double-check the
type has been set to movieclip.

Next we want to expand the options available to us for this symbol. Click
on the advanced button.

We’re only interested in the linkage properties. Tick Export for ActionScript.
This will enable us to give our symbol a unique identifier, which will be
available to us through ActionScript.

Next we want to press R or select the rectangle tool from the tools palette.
We’re going to draw ourselves a rectangle.

Don’t worry about the size and placement; we can adjust that from our
Properties Inspector. We’re going to adjust the width and height of our

<prev 78 .net february 2009

An obvious limitation of the map we’re creating is the scale. Some of the
harder to reach countries such as Malta and Jamaica are really hard to
interact with. We could add some buttons to the movie to increase the
scale, giving the user further tools to interact with our map. To achieve this
we could just add three constants to our ActionScript, which will be used to
set the maximum, minimum and incremental scale values of the map.

 var MAX_SCALE:Number = 600;
 var MIN_SCALE:Number = 100;
 var INC_SCALE:Number = 20;

Once you’ve created yourself some spiffy little buttons and assigned them
both instance names you can then create a function to handle the scale.
In this example we have a button on the stage with an instance name of
scaleMapDown.

 scaleMapDown_btn.onPress = function() {
 if (container_mc._xscale > MIN_SCALE) {
 container_mc._xscale = container_mc._yscale -= INC_SCALE;
 } else {
 //do something
 }

When the user invokes the onPress event handler for our button, we
first check to see that our map is greater than the minimum scale. If this
condition is met and returned true, then we adjust the scale of the map
by 20, by subtracting this value from the movieclips _xscale and _yscale.
Otherwise we can provide the user with some suitable feedback to say
“Hey! you are unable to scale the map any further”.

Extra interaction
Add some buttons for users to play with

Testing Throughout the build of this project we can continually check our progress by
previewing the movie within Flash

Output Our output window is a crucial tool in the development. It allows us to debug
the movie and check that all the necessary data has been successfully imported

 About the author
 Name Martin Dingley
 Site www.soapslurp.co.uk
 Areas of expertise Front-end, interactive design
 Clients Grants, Regus
 2009 resolution Lose the overhang by exercising at least
 once a week!

Resources Where to find more

rectangle to 250x50, and we want to ensure its X and Y position is sitting
comfortably on 0.

The rectangle will form the basic shape and outline for our tooltip. All we
need now is a textfield to display the information.

Hit T on your keyboard or select the text tool from your tools palette.
Draw yourself a single line text area slightly less wide than our rectangle.

If it’s not already, we want to make sure this text area is set to dynamic and
give it an instance name of label_txt. Let’s now build the function to bring this
puppy to life.

 function displayCountryInfo(name: String) : Void {

We want to attach the tooltip from our library to a variable called theTip.

 theTip = attachMovie(‘tooltip’, ‘tooltip’, 999);

Set its initial display to false until we successfully assign its position on
the stage:

 theTip._visible = false;
 Update the movieclip X and Y position to match our cursor position
 theTip._x = _root._xmouse;
 theTip._y = _root._ymouse;
 Make it visible
 theTip._visible = true;

Because our mouse will be moving over the countries, the initial X/Y
positions we assigned to the movie clip will have changed and will constantly
be changing. So we need to be updating these values at every movement
of the mouse.

We can achieve this by invoking the event handler onMouseMove.

 this.theTip.onMouseMove = function() {
 this._x = _root._xmouse;
 this._y = _root._ymouse;
 updateAfterEvent();
 };

Assign the country name to the textfield inside our tooltip:

 theTip.label_txt.text = name;
 }

With that complete, we should be ready to rock and roll.
We just need to provide a way of clearing the tooltip when it’s not needed.

We’ll do this by calling another function called removeTip(); which will hide
the tooltip.

Go to Control>Test Movie to preview the movie and check our output
window for any errors.

Where to go from here
We’ve only just touched the surface on this tutorial; the things you can do
to expand on this are endless. We can move away from the idea of using
the map as aesthetic navigational tool/toy and look at using it as a way to
demonstrate website statistics. You could track your visitor’s IP address and
use geo-locating to look up the origin of that address. Using this data you can
easily come up with a simple legend for the map, which can colour the maps
based on the visitor count. L

Flash debugging
If Firefox is your primary browser, then Flash tracer by Alessandro of
sephiroth.it is a handy little add-on. It relies on you having the debug
player installed on your system. Flash tracer will output your Flash trace
methods inside your browser window.
https://addons.mozilla.org/en-US/firefox/addon/3469

Vector maps
Free vector world maps cannot be found easily as there are only few
around. The web resource depot lists a small handful of free maps in an
array of styles, which are available for download to use in your projects.
www.webresourcesdepot.com/free-vector-world-maps-collection

Library All our movie assets are available direct from our library. You can access this at
any point by going to Window > Library or Command (Mac)/Ctrl(PC) + L.

